Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 14(3)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38540772

RESUMO

The enhancement of bioactivity in materials has become an important focus within the field of bone tissue engineering. Four-dimensional intelligent osteogenic module, an innovative fusion of 3D printing with the time axis, shows immense potential in augmenting the bioactivity of these materials, thereby facilitating autologous bone regeneration efficiently. This study focuses on novel bone repair materials, particularly bioactive scaffolds with a developmental osteogenic microenvironment prepared through 3D bioprinting technology. This research mainly creates a developmental osteogenic microenvironment named "DOME". This is primed by the application of a small amount of the small molecule drug SB216763, which activates canonical Wnt signaling in osteocytes, promoting osteogenesis and mineralization nodule formation in bone marrow stromal cells and inhibiting the formation of adipocytes. Moreover, DOME enhances endothelial cell migration and angiogenesis, which is integral to bone repair. More importantly, the DOME-PCI3D system, a 4D intelligent osteogenic module constructed through 3D bioprinting, stably supports cell growth (91.2% survival rate after 7 days) and significantly increases the expression of osteogenic transcription factors in bone marrow stromal cells and induces osteogenic differentiation and mineralization for 28 days. This study presents a novel approach for bone repair, employing 3D bioprinting to create a multifunctional 4D intelligent osteogenic module. This innovative method not only resolves challenges related to shape-matching and biological activity but also demonstrates the vast potential for applications in bone repair.


Assuntos
Indóis , Maleimidas , Osteogênese , Via de Sinalização Wnt , Osteogênese/fisiologia , Osteócitos , Osso e Ossos , Engenharia Tecidual/métodos , Diferenciação Celular
2.
Front Bioeng Biotechnol ; 11: 1215233, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37576993

RESUMO

The safe and effective use of Wnt signaling is a hot topic in developing osteogenic drugs. SB216763 (S33) is a widely used highly specific GSK3ß inhibitor. Here, we show that S33 initiates canonical Wnt signaling by inhibiting GSK3ß activity in the bone marrow stromal cell line ST2 and increases osteoblast marker alkaline phosphatase activity, osteoblast marker gene expression including Alpl, Col1α1, and Runx2, promoting osteogenic differentiation and mineralization of ST2 cells. In addition, S33 suppressed the expression of adipogenic transcription factors Pparg and Cebpa in ST2 cells to suppress adipogenesis. ICRT-14, a specific transcriptional inhibitor of Wnt signaling, reversed the effects of S33 on the differentiation of ST2 cells. S33 also increased the expression of osteoclast cytokines RANKL and Opg but decreased the RANKL/Opg ratio and had the potential to inhibit osteoclast differentiation. In addition, we printed the PSCI3D (polycaprolactone, S33, cell-integrated 3D) scaffolds using a newly established integrated 3D printing system for hard materials and cells. S33 sustained release in the hydrogel of the scaffold with 25.4% release on day 1% and 81.7% release over 7 days. Cells in the scaffolds had good cell viability. The ratio of live/dead cells remained above 94% for 7 days, while the cells in the scaffolds proliferated linearly, and the proliferative activity of the PSCI3D scaffold group increased 1.4-fold and 1.7-fold on days 4 and 7, respectively. Similarly, in PSCI3D scaffolds, osteogenic differentiation of st2 cells was increased. The alkaline phosphatase activity increased 1.4- and 4.0-fold on days 7 and 14, respectively, and mineralization increased 1.7-fold at 21 days. In addition, PSCI3D conditioned medium promoted migration and tubulogenesis of HUVECs, and S33 upregulated the expression of Vegfa, a key factor in angiogenesis. In conclusion, our study suggests that S33 functions in osteogenesis, anti-adipogenesis, and potential inhibition of osteoclast differentiation. And the sustained release of S33 in PSCI3D scaffolds creates a safe osteogenic niche, which promotes cell proliferation, osteogenesis, and angiogenesis and has application prospects.

3.
Int J Mol Sci ; 24(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36983081

RESUMO

Finding a bone implant that has high bioactivity that can safely drive stem cell differentiation and simulate a real in vivo microenvironment is a challenge for bone tissue engineering. Osteocytes significantly regulate bone cell fate, and Wnt-activated osteocytes can reversely regulate bone formation by regulating bone anabolism, which may improve the biological activity of bone implants. To achieve a safe application, we used the Wnt agonist CHIR99021 (C91) to treat MLO-Y4 for 24 h, in a co-culture with ST2 for 3 days after withdrawal. We found that the expression of Runx2 and Osx increased, promoted osteogenic differentiation, and inhibited adipogenic differentiation in the ST2 cells, and these effects were eliminated by the triptonide. Therefore, we hypothesized that C91-treated osteocytes form an osteogenic microenvironment (COOME). Subsequently, we constructed a bio-instructive 3D printing system to verify the function of COOME in 3D modules that mimic the in vivo environment. Within PCI3D, COOME increased the survival and proliferation rates to as high as 92% after 7 days and promoted ST2 cell differentiation and mineralization. Simultaneously, we found that the COOME-conditioned medium also had the same effects. Therefore, COOME promotes ST2 cell osteogenic differentiation both directly and indirectly. It also promotes HUVEC migration and tube formation, which can be explained by the high expression of Vegf. Altogether, these results indicate that COOME, combined with our independently developed 3D printing system, can overcome the poor cell survival and bioactivity of orthopedic implants and provide a new method for clinical bone defect repair.


Assuntos
Osteócitos , Osteogênese , Osteócitos/metabolismo , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Diferenciação Celular , Células Cultivadas
4.
Int J Mol Sci ; 24(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36901851

RESUMO

Aging of mesenchymal stem cells(MSCs) has been widely reported to be strongly associated with aging-related diseases, including osteoporosis (OP). In particular, the beneficial functions of mesenchymal stem cells decline with age, limiting their therapeutic efficacy in age-related bone loss diseases. Therefore, how to improve mesenchymal stem cell aging to treat age-related bone loss is the current research focus. However, the underlying mechanism remains unclear. In this study, protein phosphatase 3, regulatory subunit B, alpha isoform, calcineurin B, type I (PPP3R1) was found to accelerate the senescence of mesenchymal stem cells, resulting in reduced osteogenic differentiation and enhanced adipogenic differentiation in vitro. Mechanistically, PPP3R1 induces changes in membrane potential to promote cellular senescence by polarizing to depolarizing, increasing Ca2+ influx and activating downstream NFAT/ATF3/p53 signaling. In conclusion, the results identify a novel pathway of mesenchymal stem cell aging that may lead to novel therapeutic approaches for age-related bone loss.


Assuntos
Calcineurina , Osteoporose , Humanos , Diferenciação Celular , Membrana Celular , Células Cultivadas , Senescência Celular , Osteogênese
5.
Bioact Mater ; 21: 110-128, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36093329

RESUMO

Cell source is the key to decellularized matrix (DM) strategy. This study compared 3 cell types, osteocytes with/without dominant active Wnt/ß-catenin signaling (daCO and WTO) and bone marrow stromal cells (BMSCs) for their DMs in bone repair. Decellularization removes all organelles and >95% DNA, and retained >74% collagen and >71% GAG, maintains the integrity of cell basement membrane with dense boundaries showing oval and honeycomb structure in osteocytic DM and smooth but irregular shape in the BMSC-DM. DM produced higher cell survival rate (90%) and higher proliferative activity. In vitro, daCO-DM induces more and longer stress fibers in BMSCs, conducive to cell adhesion, spreading, and osteogenic differentiation. 8-wk after implantation of the critical-sized parietal bone defect model, daCO-DM formed tight structures, composed of a large number of densely-arranged type-I collagen under polarized light microscope, which is similar to and integrated with host bone. BV/TV (>54%) was 1.5, 2.9, and 3.5 times of WTO-DM, BMSC-DM, and none-DM groups, and N.Ob/T.Ar (3.2 × 102/mm2) was 1.7, 2.9, and 3.3 times. At 4-wk, daCO-DM induced osteoclastogenesis, 2.3 times higher than WTO-DM; but BMSC-DM or none-DM didn't. daCO-DM increased the expression of RANKL and MCSF, Vegfa and Angpt1, and Ngf in BMSCs, which contributes to osteoclastogenesis, angiogenesis, and neurogenesis, respectively. daCO-DM promoted H-type vessel formation and nerve markers ß3-tubulin and NeuN expression. Conclusion: daCO-DM produces metabolic and neurovascularized organoid bone to accelerate the repair of bone defects. These features are expected to achieve the effect of autologous bone transplantation, suitable for transformation application.

6.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 38(12): 1097-1103, 2022 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-36585232

RESUMO

Objective To investigate the osteogenic differentiation of bone marrow stromal cells (BMSC) with Notch signaling activation in vitro. Methods The BMSC derived from Notch1-NICDflox/flox mice were infected with recombinant adenovirus expressing Cre or GFP respectively, and designated as Ad-Cre group and Ad-GFP group. The expression of Notch1 was evaluated by Western blot analysis. Alkaline phosphatase (ALP) activity was determined by ALP staining and biochemical quantification, and the calcium deposition was analyzed with Alizarin red S staining. Real-time fluorescence quantitative PCR (qPCR) was used to quantify the expression of Notch target genes(Hes1, Hey1, Hey2, HeyL), osteogenic differentiation-related genes(ALP, RUNX2, osterix, osteocalcin), and angiogenesis factors(VEGF, HIF-1α). Results Notch signaling in BMSC of Notch1-NICDflox/flox mice was activated successfully by Ad-Cre, as was evidenced by the significantly elevated expression of Notch1 and Notch target genes. Compared with the Ad-GFP group, ALP activity and the late calcium deposition were significantly increased upon treatment with Ad-Cre. qPCR results demonstrated that the expression of ALP, RUNX2, osterix, osteocalcin, VEGF, HIF-1α in the Ad-Cre group were significantly upregulated. Conclusion Activation of Notch signaling in BMSC in vitro significantly promotes osteogenic differentiation.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Camundongos , Animais , Osteogênese/genética , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Osteocalcina/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Cálcio/metabolismo , Diferenciação Celular , Células da Medula Óssea , Células Cultivadas
7.
Int J Mol Sci ; 23(24)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36555684

RESUMO

Bone formation is critically needed in orthopedic clinical practice. We found that, bone morphogenetic protein-7 (BMP-7) gene expression was significantly increased in fractured mice, which activates canonical Wnt signaling exclusively in osteocytes. Wnt and BMP signaling appear to exhibit synergistic or antagonistic effects in different kinds of cells. However, the communication between Wnt/ß-catenin signaling and BMP signaling in osteocytes is almost unknown. Our study verified in vitro that BMP-7 expression was significantly increased when Wnt signaling was activated in osteocytes. Next, BMP-7 in osteocytes was overexpressed using an adenovirus, the osteogenesis of bone marrow stem cells (BMSCs) was enhanced, when cocultured with osteocytes. On the contrary, BMP-7 in osteocytes was silenced using an adenovirus, the osteogenesis of bone marrow stem cells (BMSCs) was weakened. In addition, the osteogenesis of BMSCs was no longer promoted by Wnt-activated osteocytes when BMP-7 was silenced. Therefore, the results showed that BMP-7 mediated the anabolic actions of Wnt/ß-catenin signaling in osteocytes. Our study provides new evidence for the clinical application of BMP-7-overexpressed osteocytes.


Assuntos
Proteína Morfogenética Óssea 7 , Osteogênese , Via de Sinalização Wnt , Animais , Camundongos , beta Catenina/genética , beta Catenina/metabolismo , Proteína Morfogenética Óssea 7/genética , Diferenciação Celular/genética , Células Cultivadas , Osteócitos/metabolismo , Osteogênese/genética
8.
Front Endocrinol (Lausanne) ; 13: 926622, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35923616

RESUMO

The discovery and application of small molecules is one of the practical strategies of safe osteogenic drugs. The small molecule CHIR99021 (C91) is a highly specific, safe, and most effective GSK-3ß Inhibitor. This study found that it efficiently activates the canonical Wnt signaling of bone marrow stromal cell ST2 and promotes osteoblast differentiation and mineralization. C91 increases the production and biochemical activity of osteoblast marker alkaline phosphatase, the expression of osteoblast marker genes Alpl, Bglap, Runx2, and Sp7, and the formation of bone nodules. Triptonide is a transcription inhibitor of Wnt target gene, which diminishes C91-induced osteoblast differentiation in a dose-dependent manner. Meanwhile, C91 also induces autophagy through autophagosome formation and conversion of autophagy biomarker LC-3I into LC-3II. Autophagy inhibitor 3MA partially reduces C91-induced osteoblast differentiation and mineralization; autophagy inducer Rapamycin increases the expression of ß-catenin to promote osteogenic differentiation, but cannot alleviate the inhibition of Triptonide on C91-induced osteogenic differentiation, indicating the crosstalk of canonical Wnt signaling and autophagy regulates C91-induced osteoblast differentiation. Furthermore, in order to simulate the in vivo detection of C91 in osteogenesis process, we made a C91 slow-release hydrogel with our newly established polycaprolactone and cell-integrated 3D printing system (PCCI3D module). The sustained release C91 promotes the differentiation and mineralization of ST2 cells. C91 can also enhance the proliferative activity of ST2 cells. The release rate of C91 from hydrogel gradually decreases within 7 days. During this period, the C91 is released by 83.0% and the cell viability maintained at 96.4%. Therefore, the small molecule Wnt agonist C91 promotes osteogenesis through caonical and autophagy-mediated Wnt signaling pathway with an option for translational application.


Assuntos
Osteogênese , Via de Sinalização Wnt , Autofagia , Glicogênio Sintase Quinase 3 beta/farmacologia , Hidrogéis/farmacologia , Proteína 1 Semelhante a Receptor de Interleucina-1 , Piridinas , Pirimidinas , Via de Sinalização Wnt/fisiologia
9.
Int J Mol Sci ; 23(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35955478

RESUMO

Growth factors were often used to improve the bioactivity of biomaterials in order to fabricate biofunctionalized bone grafts for bone defect repair. However, supraphysiological concentrations of growth factors for improving bioactivity could lead to serious side effects, such as ectopic bone formation, radiculitis, swelling of soft tissue in the neck, etc. Therefore, safely and effectively applying growth factors in bone repair biomaterials comes to be an urgent problem that needs to be addressed. In this study, an appropriate concentration (50 ng/mL) of Wnt3a was used to pretreat the 3D-bioprinting gelatin methacryloyl(GelMA)/polycaprolactone(PCL) scaffold loaded with bone marrow stromal cell line ST2 for 24 h. This pretreatment promoted the cell proliferation, osteogenic differentiation, and mineralization of ST2 in the scaffold in vitro, and enhanced angiogenesis and osteogenesis after being implanted in critical-sized mouse calvarial defects. On the contrary, the inhibition of Wnt/ß-catenin signaling in ST2 cells reduced the bone repair effect of this scaffold. These results suggested that ST2/GelMA/PCL scaffolds pretreated with an appropriate concentration of Wnt3a in culture medium could effectively enhance the osteogenic and angiogenic activity of bone repair biomaterials both in vitro and in vivo. Moreover, it would avoid the side effects caused by the supraphysiological concentrations of growth factors. This functionalized scaffold with osteogenic and angiogenic activity might be used as an outstanding bone substitute for bone regeneration and repair.


Assuntos
Proteína 1 Semelhante a Receptor de Interleucina-1 , Osteogênese , Animais , Materiais Biocompatíveis/farmacologia , Regeneração Óssea , Diferenciação Celular , Gelatina , Metacrilatos , Camundongos , Neovascularização Patológica , Impressão Tridimensional , Engenharia Tecidual/métodos , Tecidos Suporte
10.
Free Radic Biol Med ; 188: 337-350, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35752374

RESUMO

Excessive iron has emerged in a large population of patients suffering from degenerative or hematological diseases with a common outcome, osteoporosis. However, its underlying mechanism remains to be clarified in order to formulate effective prevention and intervention against the loss of bone-forming osteoblasts. We show herein that increased intracellular iron by ferric ammonium citrate (FAC) mimicking the so-called non-transferrin bound iron concentrations leads to ferroptosis and impaired osteoblast differentiation. FAC upregulates the expression of Trfr and DMT1 genes to increase iron uptake, accumulating intracellular labile ferrous iron for iron overload status. Then, the excessive ferrous iron generates reactive oxygen species (ROS) and lipid peroxidation products (LPO), causing ferroptosis with its typical mitochondrial morphological changes, such as shrinkaged and condensed membrane with diminution and loss of crista and outer membrane rupture. We further examined that ferroptosis is the main cause responsible for FAC-disrupted osteoblast differentiation, although apoptosis and senescence are concurrently induced as well. Mechanistically, we revealed that iron dose-dependently down-regulates the expression of Wnt target genes and inhibits the transcription of Wnt reporter TopFlash construct, so as to inhibit the canonical Wnt signaling. Wnt agonist, ferroptosis inhibitor, or antioxidant melatonin reverses iron-inhibited canonical Wnt signaling to restore osteoblast differentiation by reducing ROS and LPO production to prevent ferroptosis notably without reducing iron overload. This study proposes a working model against excessive iron-induced osteoporosis: iron chelator deferoxamine or the above three drugs prevent ferroptosis, restore traditional Wnt signaling to maintain osteoblast differentiation no matter whether iron overload is removed or not. Additionally, iron chelator should be used to a suitable extent because iron itself is necessary for osteogenic differentiation.


Assuntos
Ferroptose , Sobrecarga de Ferro , Osteoporose , Humanos , Ferro/metabolismo , Quelantes de Ferro/metabolismo , Quelantes de Ferro/farmacologia , Sobrecarga de Ferro/genética , Sobrecarga de Ferro/metabolismo , Osteoblastos , Osteogênese/genética , Osteoporose/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Via de Sinalização Wnt
11.
Cells ; 11(5)2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35269452

RESUMO

Finding and constructing an osteogenic microenvironment similar to natural bone tissue has always been a frontier topic in orthopedics. We found that osteocytes are targeting cells controlling bone anabolism produced by PTH (JBMR 2017, PMID: 27704638), and osteocytes with activated Wnt signaling orchestrate bone formation and resorption (PNAS 2015, PMID: 25605937). However, methods for taking advantage of the leading role of osteocytes in bone regeneration remain unexplored. Herein, we found that the osteocytes with SKL2001-activated Wnt signaling could be an osteogenic microenvironment (SOOME) which upregulates the expression of bone transcription factor Runx2 and Bglap and promotes the differentiation of bone marrow stromal cell ST2 into osteoblasts. Interestingly, 60 µM SKL2001 treatment of osteocytic MLO-Y4 for 24 h maintained Wnt signaling activation for three days after removal, which was sufficient to induce osteoblast differentiation. Triptonide, a Wnt inhibitor, could eliminate this differentiation. Moreover, on day 5, the Wnt signaling naturally decreased to the level of the control group, indicating that this method of Wnt-signaling induction is safe to use. We quickly verified in vivo function of SOOME to a good proximation in 3D bioprinted modules composed of reciprocally printed polycaprolactone bundles (for support) and cell bundles (for bioactivity). In the cell bundles, SOOME stably supported the growth and development of ST2 cells, the 7-day survival rate was as high as 91.6%, and proliferation ability increased linearly. Similarly, SOOME greatly promoted ST2 differentiation and mineralization for 28 days. In addition, SOOME upregulated the expression of angiopoietin 1, promoted endothelial cell migration and angiogenesis, and increased node number and total length of tubes and branches. Finally, we found that the function of SOOME could be realized through the paracrine pathway. This study reveals that osteocytes with Wnt signaling activated by SKL2001 are a safe osteogenic microenvironment. Both SOOME itself and its cell-free culture supernatant can improve bioactivity for osteoblast differentiation, with composite scaffolds especially bearing application value.


Assuntos
Osteócitos , Osteogênese , Imidazóis , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Isoxazóis , Poliésteres , Via de Sinalização Wnt
12.
FASEB J ; 36(3): e22196, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35137455

RESUMO

Parathyroid hormone (PTH) signaling downstream of the PTH 1 receptor (Pth1r) results in both bone anabolic and catabolic actions by mechanisms not yet fully understood. In this study, we show that Pth1r signaling upregulates the expression of several components of the Notch pathway and that Notch signals contribute to the catabolic actions of PTH in bone. We found that constitutive genetic activation of PTH receptor signaling in osteocytes (caPth1rOt ) or treatment with PTH daily increased the expression of several Notch ligands/receptors in bone. In contrast, sustained elevation of endogenous PTH did not change Notch components expression. Deletion of the PTH receptor or sclerostin overexpression in osteocytes abolished Notch increases by PTH. Further, deleting the canonical Notch transcription factor Rbpjk in osteocytes decreased bone mass and increased resorption and Rankl expression in caPth1rOt mice. Moreover, pharmacological bone-targeted Notch inhibition potentiated the bone mass gain induced by intermittent PTH by reducing bone resorption and preserving bone formation. Thus, Notch activation lies downstream of anabolic signaling driven by PTH actions in osteocytes, and Notch pharmacological inhibition maximizes the bone anabolic effects of PTH.


Assuntos
Reabsorção Óssea/metabolismo , Osteogênese , Hormônio Paratireóideo/metabolismo , Receptores Notch/metabolismo , Animais , Reabsorção Óssea/genética , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Osteócitos/metabolismo , Receptor Tipo 1 de Hormônio Paratireóideo/metabolismo , Receptores Notch/genética , Transdução de Sinais
13.
Aging (Albany NY) ; 12(23): 24242-24254, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33226960

RESUMO

Autophagy is involved in degenerative diseases such as osteoarthritis and disc degeneration. Although, tumor necrosis factor α-induced protein 3 (TNFAIP3) is well-known as a key regulator of inflammation and autophagy, it is still not clear whether TNFAIP3 regulates autophagy to protect from human disc cells degeneration. We hypothesize that TNFAIP3 may also regulate autophagy to inhibit pro-inflammatory cytokines expression in human nucleus pulposus cells (NPCs). In this study, TNFAIP3 expression was increased in degenerative disc tissue as well as LPS-stimulated human NPCs, and the effect of TNFAIP3 in LPS-induced NPCs was further explored. The results demonstrated that pro-inflammatory cytokines expression in TNFAIP3-His cells was decreased, while it was increased in TNFAIP3-siRNA cells. Further molecular mechanism research showed that TNFAIP3-siRNA cells enhanced the phosphorylation of mammalian target of rapamycin (mTOR) and inhibited autophagy. Meanwhile, after treatment of TNFAIP3-siRNA cells with the mTOR inhibitor Torin1, the level of autophagy increased and the decrease of extracellular matrix was reversed. In summary, overexpressed TNFAIP3 can promote autophagy and reduce inflammation in LPS-induced human NPCs. Moreover, autophagy triggered by TNFAIP3 can ameliorate the degeneration of inflammatory human NPCs, providing a potential and an attractive therapeutic strategy for degenerative disease.


Assuntos
Autofagia , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Inflamação/metabolismo , Degeneração do Disco Intervertebral/metabolismo , Núcleo Pulposo/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo , Autofagia/efeitos dos fármacos , Estudos de Casos e Controles , Células Cultivadas , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Humanos , Inflamação/genética , Inflamação/patologia , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/patologia , Lipopolissacarídeos/toxicidade , Núcleo Pulposo/efeitos dos fármacos , Núcleo Pulposo/patologia , Fosforilação , Transdução de Sinais , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética
14.
Sci Rep ; 10(1): 10495, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32591524

RESUMO

The hollow cylindrical nanohydroxyapatite/polyamide 66 strut (n-HA/PA66) has been used clinically for anterior cervical reconstruction. However, rates of occurrence of a "radiolucent gap" between the dense strut and adjacent endplates were reported. The aim of this in vivo study was to evaluate the viability and advantages of the novel porous n-HA/PA66 strut. The goat C3/4 partial discectomy and fusion model was built, and two groups of n-HA/PA66 struts were implanted into C3/4: group 1, porous n-HA/PA66 strut; and group 2, hollow cylindrical n-HA/PA66 strut filled with autogenous cancellous bone. CT evaluation was performed to assess the fusion status after 12 and 24 weeks. The cervical spines were harvested. Histomorphological analysis was performed to determine new bone formation. Biomechanical testing was performed to determine range of motion (ROM). CT confirmed the disappearance of the boundary of the porous strut and host bone, while the radiolucent gap remained clearly discernible in the dense strut group. The mean CT fusion scores of the porous group were significantly higher. Histologic evaluation showed that the porous struts promoted better osteointegration. Calcein fluorochrome labelling indicated faster bone ingrowth in the porous struts. Biomechanical tests revealed that the porous struts had significantly reduced micromotion. The porous n-HA/PA66 strut could offer interesting potential for cervical reconstruction after corpectomy.


Assuntos
Vértebras Cervicais/efeitos dos fármacos , Vértebras Cervicais/cirurgia , Durapatita/farmacologia , Nanopartículas/administração & dosagem , Nylons/farmacologia , Doenças da Coluna Vertebral/cirurgia , Animais , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/cirurgia , Discotomia/métodos , Feminino , Cabras , Osteogênese/efeitos dos fármacos , Porosidade , Próteses e Implantes , Fusão Vertebral/métodos
15.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 34(2): 246-255, 2020 Feb 15.
Artigo em Chinês | MEDLINE | ID: mdl-32030959

RESUMO

OBJECTIVE: To investigate the effect of all-trans retinoic acid (ATRA) and vascular endothelial growth factor (VEGF) on the osteogenic differentiation of mouse embryonic fibroblasts (MEFs). METHODS: The fetal mice in the uterus of NIH pregnant mice (pregnancy 12-15 days) were collected, and the heads and hearts etc. were removed. Then MEFs were separated from the rest tissues of the fetal mice and cultured by trypsin digestion and adherent culture. HEK-293 cells were used to obtain recombinant adenovirus-red fluorescent protein (Ad-RFP) and Ad-VEGF by repeatedly freezing and thawing. Alkaline phosphatase (ALP) staining and quantitative detection were used to detect the changes of ALP activity in MEFs applied with ATRA or VEGF alone or combined use of ATRA and VEGF on the 3rd and 5th days. The cultured 3rd to 4th generation MEFs were divided into groups A, B, C, and D, and were cultured with DMSO plus Ad-RFP, ATRA, Ad-VEGF, ATRA plus Ad-VEGF, respectively. Real-time fluorescence quantitative PCR (qRT-PCR) was used to detect the mRNA expressions of osteogenic markers including ALP, collagen type Ⅰ, osteopontin (OPN), osteocalcin (OCN), and angiogenic markers including VEGF, angiopoietin 1 (ANGPT1), and endomucin (EMCN) on the 3rd and 7th days. Immunohistochemical staining was used to detect the protein expressions of OPN and VEGF on the 3rd, 5th, and 7th days in each group. Alizarin red staining was used to detect calcium salt deposition levels in each group at 14 and 21 days after osteogenic induction. Fifteen athymic female nude mice aged 4 to 6 weeks were randomly divided into 3 groups and 5 mice in each group. Then MEFs treated with ATRA, Ad-VEGF, and ATRA plus Ad-VEGF were injected subcutaneously into the dorsal and ventral sides, respectively. X-ray observation, gross observation, and histological staining (Masson, HE, and Safranin O-fast green stainings) were performed at 5 weeks after implantation to observe the ectopic bone formation in nude mice in each group. RESULTS: MEFs were successfully isolated and cultured. The acquired Ad-RFP and Ad-VEGF were successfully transfected into MEFs with approximately 50% and 20% transfection rates. ALP activity tests showed that ATRA or Ad-VEGF could enhance ALP activity in MEFs ( P<0.05), and ATRA had a stronger effect than Ad-VEGF; and the combined use of ATRA and Ad-VEGF significantly enhanced the ALP activity in MEFs ( P<0.05). qRT-PCR test showed that the combined use of ATRA and Ad-VEGF also increased the relative mRNA expressions of early-stage osteogenesis-related markers ALP, OPN, and collagen type I ( P<0.05); the relative mRNA expressions of angiogenesis-related markers VEGF, EMCN, and ANGPT1 increased at 7 days ( P<0.05). Immunohistochemical staining showed that ATRA combined with Ad-VEGF not only enhanced OPN protein expression, but also increased VEGF protein expression on 7th day. Alizarin red staining showed that the application of ATRA or Ad-VEGF induced weak calcium salt deposition, and the combined use of ATRA and Ad-VEGF significantly enhanced the effect of calcium salt deposition in MEFs. The results of implantation experiments in nude mice showed that X-ray films observation revealed obvious bone mass in the ATRA plus Ad-VEGF group, and the bone was larger than that in other groups. Histological staining showed a large amount of collagen and mature bone trabeculae, bone matrix formation, and gray-green collagen bone tissue, indicating that the combined use of ATRA and Ad-VEGF significantly enhanced the osteogenic effect of MEFs in vivo. CONCLUSION: The combined use of ATRA and VEGF can induce the osteogenic differentiation of MEFs.


Assuntos
Osteogênese , Animais , Diferenciação Celular , Células Cultivadas , Feminino , Fibroblastos , Células HEK293 , Humanos , Camundongos , Camundongos Nus , Tretinoína , Fator A de Crescimento do Endotélio Vascular
16.
Stem Cells Dev ; 29(4): 249-256, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31701817

RESUMO

The neural crest stem cells derived from human induced pluripotent stem cells (iPSC-NCSCs) are a valuable autologous cell source for tissue engineering and regenerative medicine. In this study, we investigated how iPSC-NCSCs could be regulated to regenerate arteries by microenvironmental factors, including the physical factor of matrix stiffness, and the chemical factor of transforming growth factor beta-1 (TGF-ß1). We found that, compared to soft substrate, stiff substrate drove iPSC-NCSCs differentiation into smooth muscle cells, which was further enhanced by TGF-ß1. To investigate the regulatory role of TGF-ß1 in vivo, we fabricated vascular grafts composed of electrospun nanofibrous scaffolds, collagen gel, iPSC-NCSCs, and TGF-ß1, and implanted them into athymic rats. The results showed that TGF-ß1 significantly promoted extracellular matrix synthesis and increased mechanical strength of vascular grafts. This study presents a proof of concept that iPSC-NCSCs can be used as a promising autologous cell source for vascular regeneration when combined with physical and chemical engineering.


Assuntos
Prótese Vascular , Artérias Carótidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Tecidos Suporte , Fator de Crescimento Transformador beta1/farmacologia , Animais , Fenômenos Biomecânicos , Artérias Carótidas/citologia , Artérias Carótidas/fisiologia , Diferenciação Celular/efeitos dos fármacos , Colágeno/química , Colágeno/farmacologia , Géis , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/fisiologia , Nanofibras/química , Nanofibras/ultraestrutura , Crista Neural/citologia , Crista Neural/efeitos dos fármacos , Crista Neural/fisiologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/fisiologia , Poliésteres/química , Ratos , Ratos Nus , Regeneração/efeitos dos fármacos , Regeneração/fisiologia , Engenharia Tecidual/métodos
17.
Ann Transl Med ; 7(18): 441, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31700877

RESUMO

BACKGROUND: Tantalum rods have been used in osteonecrosis of the femoral head (ONFH) for several years, while Zimmer trabecular metal implants have been proposed as the best choice. The aim of this study was to evaluate the effect of a new porous tantalum rod on the treatment of early ONFH. METHODS: From July 2014 to December 2015, 19 patients (21 hips) were treated with Runze tantalum rod, and 20 patients (20 hips) received Zimmer tantalum prosthesis. All patients were followed up for at least 3 years. RESULTS: There was no significant difference in demographic characteristics and the Harris Hip Score (HHS) improvement between the two groups. Kaplan-Meier analysis did not show any statistically significant difference in survival rates. One case in the Runze group had persistent pain and required conversion to total hip arthroplasty (THA) 8 months post-surgery. Histological evaluations revealed the presence of abundant new bone ingrowth into pores of the tantalum. The osteonecrosis observed in other patients was almost unchanged. At final follow-up, progressive collapse of the femoral head or the apparent joint space narrowing had not occurred. CONCLUSIONS: Compared with the traditional implants, implantation of the Chinese tantalum rod in the treatment of Association Research Circulation Osseous (ARCO) stages I, and II ONFH demonstrated highly encouraging clinical results.

18.
J Bone Miner Res ; 32(3): 522-535, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27704638

RESUMO

Osteocytes integrate the responses of bone to mechanical and hormonal stimuli by poorly understood mechanisms. We report here that mice with conditional deletion of the parathyroid hormone (PTH) receptor 1 (Pth1r) in dentin matrix protein 1 (DMP1)-8kb-expressing cells (cKO) exhibit a modest decrease in bone resorption leading to a mild increase in cancellous bone without changes in cortical bone. However, bone resorption in response to endogenous chronic elevation of PTH in growing or adult cKO mice induced by a low calcium diet remained intact, because the increased bone remodeling and bone loss was indistinguishable from that exhibited by control littermates. In contrast, the bone gain and increased bone formation in cancellous and cortical bone induced by daily injections of PTH and the periosteal bone apposition induced by axial ulna loading were markedly reduced in cKO mice compared to controls. Remarkably, however, wild-type (WT) control littermates and transgenic mice overexpressing SOST injected daily with PTH exhibit similar activation of Wnt/ß-catenin signaling, increased bone formation, and cancellous and cortical bone gain. Taken together, these findings demonstrate that Pth1r in DMP1-8kb-expressing cells is required to maintain basal levels of bone resorption but is dispensable for the catabolic action of chronic PTH elevation; and it is essential for the anabolic actions of daily PTH injections and mechanical loading. However, downregulation of Sost/sclerostin, previously shown to be required for bone anabolism induced by mechanical loading, is not required for PTH-induced bone gain, showing that other mechanisms downstream of the Pth1r in DMP1-8kb-expressing cells are responsible for the hormonal effect. © 2016 American Society for Bone and Mineral Research.


Assuntos
Osso e Ossos/metabolismo , Hormônio Paratireóideo/farmacologia , Receptor Tipo 1 de Hormônio Paratireóideo/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Remodelação Óssea/efeitos dos fármacos , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/patologia , Regulação para Baixo/efeitos dos fármacos , Proteínas da Matriz Extracelular/metabolismo , Fator de Crescimento de Fibroblastos 23 , Deleção de Genes , Glicoproteínas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Tamanho do Órgão , Osteócitos/efeitos dos fármacos , Osteócitos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Suporte de Carga
19.
Int J Nanomedicine ; 11: 3179-89, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27471385

RESUMO

Graphene and its derivatives have been receiving increasing attention regarding their application in bone tissue engineering because of their excellent characteristics, such as a vast specific surface area and excellent mechanical properties. In this study, graphene-reinforced nanohydroxyapatite/polyamide66 (nHA/PA66) bone screws were prepared. The results of scanning electron microscopy observation and X-ray diffraction data showed that both graphene and nHA had good dispersion in the PA66 matrix. In addition, the tensile strength and elastic modulus of the composites were significantly improved by 49.14% and 21.2%, respectively. The murine bone marrow mesenchymal stem cell line C3H10T1/2 exhibited better adhesion and proliferation in graphene reinforced nHA/PA66 composite material compared to the nHA/PA66 composites. The cells developed more pseudopods, with greater cell density and a more distinguishable cytoskeletal structure. These results were confirmed by fluorescent staining and cell viability assays. After C3H10T1/2 cells were cultured in osteogenic differentiation medium for 7 and 14 days, the bone differentiation-related gene expression, alkaline phosphatase, and osteocalcin were significantly increased in the cells cocultured with graphene reinforced nHA/PA66. This result demonstrated the bone-inducing characteristics of this composite material, a finding that was further supported by alizarin red staining results. In addition, graphene reinforced nHA/PA66 bone screws were implanted in canine femoral condyles, and postoperative histology revealed no obvious damage to the liver, spleen, kidneys, brain, or other major organs. The bone tissue around the implant grew well and was directly connected to the implant. The soft tissues showed no obvious inflammatory reaction, which demonstrated the good biocompatibility of the screws. These observations indicate that graphene-reinforced nHA/PA66 composites have great potential for application in bone tissue engineering.


Assuntos
Materiais Biocompatíveis/farmacologia , Durapatita/farmacologia , Grafite/farmacologia , Nanopartículas/química , Nylons/farmacologia , Osteogênese/efeitos dos fármacos , Próteses e Implantes , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Animais , Adesão Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cães , Durapatita/química , Camundongos , Nanopartículas/ultraestrutura , Nylons/química , Osteocalcina/genética , Osteocalcina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Difração de Raios X
20.
Dev Biol ; 400(1): 132-8, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25641697

RESUMO

Bone morphogenetic proteins (BMPs) regulate multiple aspects of skeletal development in vertebrates. Although exogenously applied BMPs can induce chondrogenesis de novo, the role and mechanism of physiologic BMP signaling during precartilaginous mesenchymal condensation is not well understood. By deleting the type I BMP receptors or the transcription factor Smad4 in the limb bud mesenchyme, we find that loss of BMP-Smad signaling abolishes skeletal development due to a failure in mesenchymal condensation. In the absence of Smad4, expression of Sox9, an essential transcription factor for chondrogenesis, initiates normally in the proximal mesenchyme of the limb bud, but fails to maintain its level or expand to the more distal territory at the later stages. However, forced-expression of Sox9 does not restore cartilage formation in the Smad4-deficeint embryo. In vitro micromass cultures show that the Smad4-deficient cells fail to condense in a cell-autonomous manner, even though they express several cell adhesion molecules either normally or even at a higher level. Thus, BMP-Smad signaling critically controls mesenchymal condensation to initiate skeletal development likely through a Sox9-independent mechanism.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Extremidades/embriologia , Botões de Extremidades/metabolismo , Mesoderma/embriologia , Osteogênese/fisiologia , Transdução de Sinais/fisiologia , Proteína Smad4/metabolismo , Animais , Primers do DNA/genética , Imunofluorescência , Marcação In Situ das Extremidades Cortadas , Botões de Extremidades/embriologia , Camundongos , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição SOX9/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...